LjungBox¶
-
class
hyppo.time_series.LjungBox(max_lag=0)¶ Ljung-Box for Cross Correlation (CorrX) test statistic and p-value.
- Parameters
max_lag (
int, default:0) -- The maximum number of lags in the past to check dependence betweenxand the shiftedy. IfNone, thenmax_lag=np.ceil(np.log(n)). Also theMhyperparmeter below.
Notes
The statistic can be derived as follows 1:
Let \(x\) and \(y\) be \((n, 1)\) and \((n, 1)\) series respectively, which each contain \(y\) observations of the series \((X_t)\) and \((Y_t)\). Similarly, let \(x[j:n]\) be the \((n-j, p)\) last \(n-j\) observations of \(x\). Let \(y[0:(n-j)]\) be the \((n-j, p)\) first \(n-j\) observations of \(y\). Let \(M\) be the maximum lag hyperparameter. The cross distance correlation is,
\[\mathrm{Ljung-Box}_n (x, y) = n(n+2)\sum_{j=1}^M \frac{ \rho^2(x[j:n], y[0:(n-j)])}{n-j}\]where \(\rho\) is the Pearson correlation coefficient. The p-value returned is calculated either via chi-squared distribution or using a permutation test.
References
- 1
Greta M Ljung and George EP Box. On a measure of lack of fit in time series models. Biometrika, 65(2):297–303, 1978.
Methods Summary
|
Helper function that calculates the Ljung-Box cross correlation test statistic. |
|
Calulates the time-series test test statistic and p-value. |
-
LjungBox.statistic(x, y)¶ Helper function that calculates the Ljung-Box cross correlation test statistic.
-
LjungBox.test(x, y, reps=1000, workers=1, auto=True, random_state=None)¶ Calulates the time-series test test statistic and p-value.
- Parameters
x,y (
ndarrayoffloat) -- Input data matrices.xandymust have the same number of samples. That is, the shapes must be(n, p)and(n, q)where n is the number of samples and p and q are the number of dimensions. Alternatively,xandycan be distance matrices, where the shapes must both be(n, n).reps (
int, default:1000) -- The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.workers (
int, default:1) -- The number of cores to parallelize the p-value computation over. Supply-1to use all cores available to the Process.is_distsim (
bool, default:False) -- Whether or notxandyare input matrices.
- Returns