compute_dist¶
- 
hyppo.tools.compute_dist(*args, metric='euclidean', workers=1, **kwargs)¶
- Distance matrices for the input matrices. - Parameters
- *args ( - ndarrayof- float) -- Variable length input data matrices. The shapes must be- (n, p),- (n, q), etc., where n is the number of samples and p and q are the number of dimensions.
- metric ( - str,- callable, or- None, default- "euclidean") -- A function that computes the distance among the samples within each data matrix. Valid strings for- metricare, as defined in- sklearn.metrics.pairwise_distances,- From scikit-learn: [ - "euclidean",- "cityblock",- "cosine",- "l1",- "l2",- "manhattan"] See the documentation for- scipy.spatial.distancefor details on these metrics.
- From scipy.spatial.distance: [ - "braycurtis",- "canberra",- "chebyshev",- "correlation",- "dice",- "hamming",- "jaccard",- "kulsinski",- "mahalanobis",- "minkowski",- "rogerstanimoto",- "russellrao",- "seuclidean",- "sokalmichener",- "sokalsneath",- "sqeuclidean",- "yule"] See the documentation for- scipy.spatial.distancefor details on these metrics.
 - Set to - Noneor- "precomputed"if matrices are already distance matrices. To call a custom function, either create the distance matrix before-hand or create a function of the form- metric(x, **kwargs)where- xis the data matrix for which pairwise distances are calculated and- **kwargsare extra arguements to send to your custom function.
- workers ( - int, default- 1) -- The number of cores to parallelize the p-value computation over. Supply- -1to use all cores available to the Process.
- **kwargs -- Arbitrary keyword arguments provided to - sklearn.metrics.pairwise_distancesor a custom distance function.
 
- Returns
- dist_matrices ( - tupleof- ndarrayof- float) -- Distance matrices based on the metric provided by the user. One matrix is returned for each input matrix, in the same order.