GofTest¶
-
class
hyppo.kgof.base.GofTest(p, alpha)¶ A base class for a discriminability test.
- Parameters
compute_distance (
str,callable, orNone, default:"euclidean"or"gaussian") -- A function that computes the distance among the samples within each data matrix. Valid strings forcompute_distanceare, as defined insklearn.metrics.pairwise_distances,From scikit-learn: [
"euclidean","cityblock","cosine","l1","l2","manhattan"] See the documentation forscipy.spatial.distancefor details on these metrics.From scipy.spatial.distance: [
"braycurtis","canberra","chebyshev","correlation","dice","hamming","jaccard","kulsinski","mahalanobis","minkowski","rogerstanimoto","russellrao","seuclidean","sokalmichener","sokalsneath","sqeuclidean","yule"] See the documentation forscipy.spatial.distancefor details on these metrics.
Alternatively, this function computes the kernel similarity among the samples within each data matrix. Valid strings for
compute_kernelare, as defined insklearn.metrics.pairwise.pairwise_kernels,[
"additive_chi2","chi2","linear","poly","polynomial","rbf","laplacian","sigmoid","cosine"]Note
"rbf"and"gaussian"are the same metric.
Methods Summary
Calculates the goodness-of-fit test statistic. |
|
|
Perform the goodness-of-fit test and return values computed in a dictionary. |
-
abstract
GofTest.statistic(X)¶ Calculates the goodness-of-fit test statistic.
- Parameters
dat (
an instanceofData (observed data)) -- Input data matrices.
-
abstract
GofTest.test(X)¶ Perform the goodness-of-fit test and return values computed in a dictionary.
- Parameters
dat (
an instanceofData (observed data))- Returns
{-- alpha: 0.01, pvalue: 0.0002, test_stat: 2.3, h0_rejected: True, time_secs: ...}